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Abstract. Today, many processes at the Earth’s surface are constantly monitored by multiple data streams. These observations

have become central to advance our understanding of e.g. vegetation dynamics in response to climate or land use change. An-

other set of important applications is monitoring effects of climatic extreme events, other disturbances such as fires, or abrupt

land transitions. One important methodological question is how to reliably detect anomalies in an automated and generic way

within multivariate data streams, which typically vary seasonally and are interconnected across variables. Although many algo-5

rithms have been proposed for detecting anomalies in multivariate data, only few have been investigated in the context of Earth

system science applications. In this study, we systematically combine and compare feature extraction and anomaly detection

algorithms for detecting anomalous events. Our aim is to identify suitable workflows for automatically detecting anomalous

patterns in multivariate Earth system data streams. We rely on artificial data that mimic typical properties and anomalies in

multivariate spatiotemporal Earth observations. This artificial experiment is needed as there is no ’gold standard’ for the iden-10

tification of anomalies in real Earth observations. Our results show that a well chosen feature extraction step (e.g. subtracting

seasonal cycles, or dimensionality reduction) is more important than the choice of a particular anomaly detection algorithm.

Nevertheless, we identify 3 detection algorithms (k-nearest neighbours mean distance, kernel density estimation, a recurrence

approach) and their combinations (ensembles) that outperform other multivariate approaches as well as univariate extreme

event detection methods. Our results therefore provide an effective workflow to automatically detect anomalies in Earth system15

science data.

Keywords. statistical process control, process monitoring, Earth observations, artificial data, multivariate outlier detection,

novelty detection, detection of extreme events, anomaly detection, event detection, k-nearest neighbours, kernel density esti-

mation, recurrences, support vector data description, kernel null foley-sammon transform, mahalanobis distance, Hotelling’s

T 2, multivariate exponential moving average.20
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1 Introduction

The Earth system can be conceptualized as a system of highly interconnected subsystems (e.g. atmosphere, biosphere, hy-

drosphere, lithosphere). Each of these subsystems can be monitored and characterized by multiple variables. Technological

progress over the past decades has led to a boost in satellite technologies (Pfeifer et al., 2011; Nagendra et al., 2012) as well

as ground station development and routine monitoring (Baldocchi et al., 2001; Dorigo et al., 2011; Ciais et al., 2014). Addi-5

tionally, advanced computational methods efficiently integrate remote sensing and in-situ information to routinely derive novel

data products (e.g., Beer et al., 2010; Jung et al., 2011; Tramontana et al., 2016). One key scientific challenge is co-interpreting

these multiple views on the Earth system, in particular to address the impacts of changes in the climate system, the land use

system, and other transformations.

Of particular importance is the analysis of extreme events like droughts, fires, heat waves or floods which are expected to10

change in a future climate (Kharin et al., 2013). One matter of concern are changes in hydrometeorological extremes that may

translate into anomalies in vegetation dynamics, or extremes in vegetation dynamics that might result from slight changes in

climatological conditions or human intervention, and that can have severe consequences for vegetation and the carbon cycle

(Easterling et al., 2000; Meehl and Tebaldi, 2004; Seneviratne et al., 2012; Reichstein et al., 2013). Apart from natural events,

one also aims at detecting events that are a direct consequence of human interference, e.g., detecting deforestation activities is15

required to assess the compliance with laws or agreements on forest conservation and climate change.

The flood of observational data is accompanied by a similar increase in data from Earth system models (Overpeck et al.,

2011). As large amounts of data are difficult to handle and to translate to the quantities of human interest, it can be easy to

overlook events of particular importance. For example, using a simple semi-automatic detection scheme to identify abrupt

climate shifts in simulations of future climate, Drijfhout et al. (2015) found a number of abrupt events that have previously20

been overlooked in simulations.

In observations, anomalous events are often detected using extreme event detection methods suitable for univariate data

streams (e.g., Alexander et al., 2006; Rahmstorf and Coumou, 2011; Zhou et al., 2011; Donat et al., 2013; Lehmann et al.,

2015). Univariate extreme event detection can also be used to infer knowledge about underlying drivers of extremes (Zscheis-

chler et al., 2014a); it is particularly valid when the variable of interest is either of specific importance or integrates a wide array25

of relevant processes. However, some information might only be inferred when taking the multivariate combination of several

data streams into account (Vicente-Serrano et al., 2010; Seneviratne et al., 2012; Fischer, 2013; Zscheischler et al., 2015). For

instance, a significant fraction of carbon extremes events in Europe is not associated with univariate climate extremes (Zscheis-

chler et al., 2014b). Earth observations are multivariate and naturally characterized by strong dependencies and correlations in

space, time, and across dimensions (Leonard et al., 2013). We assume that any suitable anomaly detection algorithm needs to30

consider these data properties. By considering multivariate constellations for anomaly detection, it might become possible to

gain further information, i.e. about anomalies which cannot be detected with univariate extreme event detection methods (for a

review of approaches see, e.g., Ghil et al., 2011).
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Multivariate approaches in geoscience make use of anomalies occurring simultaneously in multiple data streams, often

referred to as coincidences or coexceedances (e.g., Donges et al., 2011b; Rammig et al., 2015; Zscheischler et al., 2015;

Donges et al., 2016; Guanche et al., 2016). An alternative is the copula approach introduced to the field e.g. by Schoelzel and

Friedrichs (2008); Durante and Salvadori (2010). However, the copula approach so far is limited to 2 or 3 simultaneous data

streams (Mikosch, 2006) which makes it unsuitable for high dimensional data as used in this paper.5

Interestingly, there are multiple industrial applications that likewise require anomaly detection. In this context, anomaly

detection has become a standard procedure in the wake of Harold Hotelling’s publication of the T 2 control chart in 1947

(Hotelling, 1947; Lowry and Woodall, 1992). Consider, for instance several sensors observing some industrial production

chain. These (potentially correlated) sensor data streams can be monitored with a Statistical Process Control (SPC) algorithm

(Lim et al., 2014; Ge et al., 2013; Lowry and Montgomery, 1995). The basic idea is to raise an alarm as soon as an anomaly10

according to the SPC is detected, meaning that the production chain is ’out of control’. Despite the obvious analogy, the ideas

of SPC are largely unknown in the geoscience community to the best of our knowledge. Conceptually, the industrial application

is equivalent to the idea of monitoring environmental variables. However, data differ. Earth observations (EOs) exhibit strong

(potentially non-linear) dependencies among the variables, seasonal cycles are typically present in both temporal mean and

variance. The variables may also encode dynamic feedbacks and abrupt transitions. EOs are possibly more strongly corrupted15

by noise compared to industrial applications. Furthermore industrial applications are typically less affected by low-frequency

variability than Earth observations. The most problematic aspect when considering SPC concepts in Earth system sciences is,

however, defining states of normality.

The objective of this study is to provide an overview and comparison of anomaly detection algorithms and their combination

with feature extraction techniques for identifying multivariate anomalies in EOs. Therefore we define an anomaly to be any20

consecutive spatiotemporal part of the Earth system data cube (data cube), which differs with respect to the mean, the variance,

the amplitude of the seasonal cycle of trends from the ’normal’ rest of the data cube. We adapt algorithms from SPC and

novelty detection. The study is structured as follows: First, we create a series of artificial Earth system data cubes that try to

mimic a series of real world features (in terms of multiple variables, seasonal cycles and correlation structure, etc). We are

aware that these artificial data cubes are not ‘real’ simulations of Earth system data cubes. However, relying on artificial data25

in this paper is motivated by the fact that a meaningful quantitative evaluation of unsupervised anomaly detection algorithms

and feature extraction techniques in ‘real’ Earth observation data is difficult due to the lack of ground-truth data (Zimek et al.,

2012). Second, we use these artificial data to evaluate the capability of different algorithms to detect multivariate anomalous

events. Specifically, we evaluate the performance of the algorithms to detect multivariate changes in the mean (comparable to

an extreme event), the amplitude of the annual cycle, the variance and onset of trends. Using the artificial dataset as testbed30

we apply various feature extraction schemes (Sect. 3.1), several detection algorithms (Sect. 3.2) as well as combinations of

detection algorithms (ensembles, Sect. 3.4) to compare their performance in identifying anomalous events (Sect. 3.3). From

this comparison we select suitable combinations of feature extraction (Sect. 4.1) and a few algorithms (Sect. 4.2) as well as

ensembles of algorithms (Sect. 4.3) as the best ones applicable to EOs including suggestions for their specific usage (Sect. 5).
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2 Experimental Setup

2.1 Generation Principle of the Artificial Data

Ground truth for detecting anomalies in multivariate data is rare, in particular for detecting anomalies in ‘real’ EOs. Thus, we

generate artificial data that represent common properties of EOs, including anomalies. In particular, we focus on the existence

of seasonality, correlations among variables, and non-Gaussian distributions. Data generation assumes that each subsystem of5

the Earth has uncorrelated intrinsic properties, i.e. it is dominated by a few independent components. Consequently, generating

these independent components (which cannot directly be monitored) is the first step. We then derive variables that contain

elements of all independent components and correspond to the ’observable’ measurements as a set of correlated variables

(Fig. 1).

Figure 1. Combination of 3 independent component cubes to derive 10 correlated variablesX as ’observable’ measurements. The anomalous

event is propagated into some variables of X .

More precisely, as basic version we create 3 independent components for the artificial data, each consisting of a signal10

(Gaussian, sd= 1.0) which includes seasonality in some cases (Sect. 2.3). Anomalous events are induced in one of the inde-

pendent components for which we track the exact spatiotemporal location. These 3 independent components are then weighted

with randomly generated linear (or non-linear, Sect. 2.3) weights to create a set of 10 correlated variables, which represent

the artificial data cube, i.e. try to mimic ‘observable measurements’. We add some additional measurement noise (Gaussian,

sd= 0.3) to the data cube. For more technical details of this generation scheme we refer the reader to the Appendix B.15

Our standard data cube Xti,j ,lat,lon,var encompasses ti,j = 1, . . . ,T time steps (T = 300) corresponding e.g. to a 6.5-

year time series of satellite images in 8-day intervals, lat= 1, . . . ,LAT latitudes (LAT = 50), lon= 1, . . . ,LON longitudes

(LON = 50) and var = 1, . . .V AR data streams, or variables (V AR= 10).

2.2 Generating Anomalous Events

Anomalous events are introduced on the independent components only and then propagated from the independent component20

to some of the variables in the data cube with random weights. The anomalies are contiguous in space and time. The center
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of the anomaly is assigned randomly. The challenge is to detect the propagated anomaly through the unsupervised algorithms,

i.e. without using the information about the spatiotemporal location of the anomaly. With this data cube generation scheme, we

can generate anomalies by controlling the type of the anomalous event (event type), the magnitude of the anomalous event as

well as the spatiotemporal location.

We create 4 data cubes using the following temporary event types:5

a Shift in the baseline, i.e. shift of the running mean of a time series (BaseShift) (Fig. 2 a)

b Onset of a trend in the time series (TrendOnset) (Fig. 2 b)

c Change in the amplitude of the mean seasonal cycle of a time series (MSCChange) (Fig. 2 c)

d Change in the variance of the time series (VarianceChange) (Fig. 2 d)
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Figure 2. Visualization of the 4 different event types (a-d) with 2 variables along time. The 2 variables contain an anomalous event (here: 60

time steps long) which is propagated through the underlying independent components with randomly drawn weights within the generation

process of the variables.

2.3 Additional Complications10

Apart from the basic data cubes we want to test the influence of a certain complication on the anomaly detection algorithm. In

order to do so, we create data cubes, each with one added complication, i.e. we increase the number of independent components

(MoreIndepComponents) or use a squared dependency among independent components (NonLinearDep) instead of a linear

one. Furthermore typical EOs are often driven by extrinsic forcings, i.e. the Earth’s solar system orbit, rotation, and axis tilt, thus

we add a seasonal cycle modifying the signal (SeasonalCycle). In a global context, the mean is rarely constant; we therefore15
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introduce a linear latitudinal trend into the baseline (LatitudinalGradient). In the basic case, the signal of our independent

components follows a Gaussian distribution. In the more complicated versions, we also implement alternative scenarios with

Laplacian (’doubly exponentially’) distributed signals (LaplacianNoise) and signals which exhibits spatiotemporal correlation

with red noise (CorrelatedNoise). Signal-to-noise ratio is 0.3 in the basic version, one complication increases the signal-to-noise

ratio to 1.0 (NoiseIncrease). Also the shape and duration of anomalous events differs. We double (LongExtremes) or reduce5

the temporal duration of the anomalous events (ShortExtremes) and change the spatial shape from rectangular to randomly

affecting neighbouring grid cells (RandomWalkExtreme).

2.4 Experiment design

Each data cube with a specific type of the event is generated 20 times, each time with a different magnitude of the anomalous

event (Appendix B). We introduce 10 spatially contiguous anomalous events into the independent components, with a spatial10

extent of 20 latitude and longitude steps each. Each event has a temporal extent of 5 time steps (which would be equivalent to

40 consecutive anomalous days in a 6.5 year record). Our total amount of anomalies equals about 3 % of the total data cube

which we consider to be a realistic scenario (comparable to e.g., Zscheischler et al., 2014a). Some latitudes and longitudes do

not exhibit any anomaly by design. The algorithms (Sect. 3.2) are expected to be able to deal with parts of the data cube that

do not exhibit anomalies at all, as this is also very likely to happen for applications in real Earth observations.15

Our experiment comprises 36 different event type combinations of complications, each repeated 20 times with varying event

magnitudes (Appendix B). The entire set of artificial data cube consists of 720 data cubes, corresponding to ≈87 GB of data 1.

3 Workflows to Detect Anomalies

The idea of this study is to elaborate workflows that contain both data preprocessing via feature extraction and algorithms

for the detection of anomalous events (Fig. 3). In the following we introduce these 2 elements separately and explain the20

performance evaluation strategy afterwards.

3.1 Feature extraction

’Feature extraction’ is a process to derive information from the data and condense it into non-redundant characteristic patterns.

This may facilitate data interpretation (van der Maaten, 2009). In our study the aim is to maximize the event detection rate

by providing relevant features. Feature extraction is often an element of data preprocessing. A very simple form could be25

to subtract the mean seasonal cycle (the anomaly time series becomes the feature then). Here, we concentrated mainly on

feature extraction methods that are used in the context of classical multivariate SPC (Lowry and Montgomery, 1995), data-

based process monitoring in industry (Ge et al., 2013), and univariate extreme event detection. The following feature extraction

methods are used in this study:

1Code to reproduce the data farm is provided in Appendix B.
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artificial

data cube

feature extraction

techniques

detection

algorithms

anomaly score

AUC

TDE mwVAR PCA ICA sMSC EWMA

T2 KDE REC KNN SVDD KNFST UNIV

for each event type, complication and magnitude

evaluated against the known spatiotemporal extent of the event

Figure 3. Data processing for detecting multivariate anomalies. We extract relevant features from each artificial data cube before applying

the detection algorithms. The detection algorithms output some anomaly score which we evaluate against the known extent of the event using

the Area Under the Curve (AUC). Feature extraction elements on the right hand side are understood as options and can be combined with

each other.

Subtracting the Median Seasonal Cycle (sMSC) is one way to deseasonalize time series. Deseasonalization may be instru-

mental in detecting anomalous events across different seasons. The remaining part of the time series is often referred to as

anomalies and used here as input feature.

Variance in Moving Window (mwVAR) is a popular technique for detecting trends in the variance in univariate time series

(e.g., Huntingford et al., 2013). We compute the mwVAR with a window size of 10 and subtract the median mwVAR. We use5

the estimates of the temporal moving window variance as feature to detect multivariate anomalies in the variance.

Time Delay Embedding (TDE) increases the feature vector Yt with time delayed vectors (Yt = (Xt−0τ,Xt−1τ,Xt−(m−
1)τ)) to include temporal context information. In the univariate case, this approach ideally creates an image of the attractor of

a dynamical system (Takens, 1981). The theoretical consideration does not hold true for high dimensional multivariate data,

but is nevertheless used in practical applications to include information of the dynamics in the feature vector (e.g., Koçak et al.,10

2004; Ge et al., 2013; Smets et al., 2009). Critical hyperparameters are the time delay τ and the number of dimensions m. We

fixm to 3 and τ to 6 which is a compromise between the typical choice of the first zero crossing of the temporal autocorrelation

function (Webber and Marwan, 2015) (here: 11.5 corresponding to one quarter of the annual cycle with 46 time steps) and an

accurate temporal detection (requires small τ ).

Principal Component Analysis (PCA) is a data rotation, used to find an orthogonal (uncorrelated) subspace of the data of15

nPC ≤ V AR variables (Von Storch and Zwiers, 2001). We choose nPC such that at least 95 % of the variance in the original

data cube are explained. By assuming a homogeneous covariance structure within the entire data cube, we perform the PCA

globally, i.e. with the same rotation matrix for all grid cells. The combination of TDE and PCA is sometimes referred to as

dynamic PCA when considering subsequent lags in the time series (Lee et al., 2004).
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Independent Component Analysis (ICA) can be regarded as a nonlinear alternative to PCA; it has become a standard tech-

nique of data-based process monitoring, trying to separate different sources of data by maximizing the negentropy, a measure

of non-Gaussianity of the data (Hyväringen and Oja, 2000)2. We apply ICA globally to each data cube. The hyperparameter is

the number of independent components (sources). We choose the number of independent components to be equal to nPC (see

PCA) for consistency reasons (Majeed and Avison, 2014).5

Exponentially Weighted Moving Average (EWMA) is one way of reducing the noise of the time series and taking temporal

information into account. It is common in the context of classical multivariate SPC to detect only ’significant’ outliers (Lowry

and Woodall, 1992). The multivariate feature time series Y is computed recursively as

Yti = λXti + (1−λ)Yti−1 . (1)

The hyperparameter λ determines the degree of exponential weighting between 1 (no weighting) and zero (common choice10

0.1≤ λ≤ 0.3, Santos-Fernández, 2012). We stay in this range with λ= 0.15.

There is of course a multitude of alternative approaches available in literature, but we focus on the previously summa-

rized ones as they are widely used and efficiently implemented. Furthermore, different feature extraction methods can also

be combined (Fig. 3). As the number of possible combinations is considerably large, we focus here on dimensionality reduc-

tion techniques (ICA, PCA) combined with some EWMA to reduce the noise level afterwards. Depending on the event type15

and complication, additionally removing seasonality (sMSC) or including the variance mwVAR seems to be straightforward.

Information about the dynamics (TDE) can be included before applying dimensionality reduction techniques, to keep the di-

mensionality of the system as low as possible. In the following, combinations are noted in the order in which they were applied

(e.g., PCA_EWMA means first applying PCA, then applying EWMA on the PCA features).

3.2 Anomaly Detection Algorithms20

We use several detection algorithms which we implemented in the julia package MultivariateAnomalies.jl3. We fix model

parameters for the entire data cube. Model parameters (σ, ε,Q, µ) and the models themselves (Support Vector Data Description,

Kernel Null Foley-Sammon Transform, see below) are estimated on a random subsample of 5000 data points obtained from

the entire data cube. To account for variability of the model parameter estimation, we resample 3 times. More resampling is

affordable due to high computational costs of processing the large number of data cubes. However, very little random variability25

is observed with this sample size for the best algorithms. Thus, we consider a resampling of 3 to be sufficient for a first attempt

accounting for variability in the parameterization. The following algorithms are investigated for anomaly detection.

Univariate Approach (UNIV). A simple approach to define extremes in univariate data is to identify all points above (or

below) a certain quantile. This so-called ’peak-over threshold’ approach can be transferred to deal with multiple univariate

data streams. In this case, one would consider a data point to be extreme, if one or several of the univariate variables are below30

or above a certain quantile threshold (here: globally) (e.g., Ledford and Tawn, 1996; Bae et al., 2003; Donges et al., 2016).

2We use the fastICA algorithm implemented in the julia package MultivariateStats.jl (https://github.com/JuliaStats/MultivariateStats.jl).
3 https://github.com/milanflach/MultivariateAnomalies.jl
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Applications of the so-called cooccurrence or coincidence analysis can be found in Donges et al. (2011b); Rammig et al.

(2015); Zscheischler et al. (2015); Guanche et al. (2016). For comparing the algorithms, we are interested in the information

that at least one variable is above a certain threshold. We compute this information for all possible thresholds to get a score,

i.e. a ranking of the extremeness of the data points.

Hotelling’s T2 (T2) computes the squared Mahalanobis distance of each data point Xt to its temporal mean µ weighted with5

the covariance matrix Q (Hotelling, 1947):

(Xt−µ)′Q−1(Xt−µ) (2)

A crucial prerequisite is the estimation of the covariance matrix Q, which is estimated from the random subsample of 5000

data points. Combining the feature extraction EWMA with T2 equals the traditional multivariate exponential weighted moving

average (Lowry and Woodall, 1992; Lowry and Montgomery, 1995).10

Apart from computing weighted distances to the mean (like T2), it is also possible to compute pairwise Euclidean distances

in variable space d(Xti
,Xtj

) between vectors Xti
and Xtj

of time step ti and tj for all possible timesteps ti, tj = 1 . . .T .

The resulting matrix D with Dij = d(Xti
,Xtj

) is often referred to as distance matrix or dissimilarity matrix. The following

algorithms are based on pairwise distances.

k-nearest neighbours (KNN) can be used for anomaly detection by considering the mean distance to the k-nearest neighbors15

(k-nearest neighbours Gamma (KNN-Gamma)) and the mean length of the vectors pointing from Xti to its k-nearest neighbors

(k-nearest neighbours Delta (KNN-Delta)) (Harmeling et al., 2006; Ramaswamy et al., 2000). We fix the hyperparameter k

at 10 after carefully trying different choices for k without seeing major effects on preliminary results. Furthermore, we take

advantage of the temporal structure of anomalous events excluding 5 neighbouring time steps (abs(ti− tj)≥ 5) to be also

nearest neighbours.20

Recurrences (REC). Within the framework of the theory of nonlinear dynamical systems, each state of a dynamical system

will revisit a particular region in its phase space, if waiting for a sufficiently long time (Poincaré, 1890). These dynamics

can be visualized in the recurrence plot and are quantified with several metrics usually referred to as recurrence quantification

analysis (Marwan et al., 2007). It seems straightforward to use the concept of recurrence analysis to detect states in a dynamical

system that are considered to be rare or unusual. Faranda and Vaienti (2013) used the concept of recurrences and combined it25

with extreme value theory. We want to use a more general approach without binning the time series. We count the number of

observations ζ falling into a certain ε-ball in a system of multiple variables, condensed by their distance d(Xti
,Xtj

):

ζ(Xti
) =

T∑

j=1

Φ(ε− d(Xti
,Xtj

)) (3)

Φ(z) is the Heaviside function, coding the distances to binary values (Φ(z) = 0 if z < 0, Φ(z) = 1 otherwise). A ε-hyperball

containing only few recurrent observations is considered to be rare in comparison to the majority of ζ. We compute 1−30

ζcdotT−1 to get anomaly scores, which are more likely to be an anomaly for high score values. ζ ·T−1 known as local

recurrence rate or degree of centrality in recurrence analysis (Marwan et al., 2007; Donner et al., 2010). ε is the crucial

hyperparameter, defining the radius of the ball. Typical choices in recurrence analysis are using quantiles of the distance

9
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matrix, e.g., 5 % or 10 % (Donges et al., 2011a; Flach et al., 2016). As we are not interested in small scale variations falling

of REC, but more in major anomalies we estimate ε as median of the distance matrices on the random subsample. This choice

turned out to be the optimal choice for ε in a small simulation, varying the thresholds between the 5 % to 95 % quantile of the

distance matrix (not shown). We exclude 5 neighbouring timesteps to be counted as recurrences (similar to KNN). KNN has

similarities to REC, as one could also choose a data-adaptive k such that ζ = k.5

The distance matrix D can be transformed into a kernel matrix K = exp(−0.5 ·D ·σ−2), i.e. by computing pairwise dissim-

ilarities using Gaussian kernels centered on each data point.

Kernel Density Estimation (KDE) is a standard technique for estimating densities based on column means of the kernel

matrix K (Parzen, 1962). The bandwidth σ of the kernel is a hyperparameter. We estimate σ by using the median of the

temporal distance matrix on the random subsample, which is a common choice (Schölkopf and Smola, 2001; Schölkopf et al.,10

2015).

Support Vector Data Description (SVDD) models the distribution of the training data with an enclosing hypersphere in a

high-dimensional kernel feature space (Tax and Duin, 2004). As usual a kernel matrix of the random subsample is used for

training. Although being a rather simple data description, a hypersphere in the kernel feature space can result in complex

nonlinear decision boundaries in the original space of predictor variables if a nonlinear kernel function is used. Beside the σ15

hyperparameter of the kernel function (see KDE), the SVDD approach has a parameter called outlier ratio ν (fixed to 0.2).

ν controls the amount of training samples that can be located outside of the hypersphere to prevent overfitting. As anomaly

score for testing, its distance to the center of the hypersphere in the kernel feature space is computed. Testing requires pairwise

similarities between test and training samples. For performance reasons in terms of computation time, we used the LIBSVM

(Chang and Lin, 2013) implementation of one-class Support vector machine (Schölkopf et al., 2001), which is an alternative20

formulation that leads to identical data descriptions as SVDD in our setup.

Kernel Null Foley-Sammon Transform (KNFST) maps the training data into a so-called null space, in which the training

samples have zero variance, i.e., all training samples are mapped to the same point called the target value (Bodesheim et al.,

2013). Nonlinearity is incorporated by using a kernel matrix containing pairwise similarities of the training samples (training on

the random subsample as for SVDD). Since all training samples are represented by a single target value in the one-dimensional25

null space, the anomaly score of a test sample is the absolute difference between its projection in the null space and this

target value. The projection of the test sample requires pairwise similarities to the training samples. Compared to SVDD no

parameters need to be tuned except for σ of the kernel function that are fixed to the same values for all kernel methods.

3.3 Ranking of the Workflows

Given the large number of potential combinations of feature extraction and anomaly detection algorithms, we need an objective30

criterion to compare the performances of the numerous possible workflows. We use the Area Under the receiver operator

characteristics Curve (AUC) as our measure of detection skill for a specific event type (Fawcett, 2006). The AUC is based on

the fraction of events that are correctly detected (true positives) and the fraction of (false) detections among all non-events

(false positives), for all possible decision thresholds that could be applied to scores produced by the algorithms. AUC values of
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0.5 would be achieved by random detection, and values below 0.5 indicate that a lower score is more likely assigned to (true)

anomalies than to non-anomalies.

For each data cube with a given event magnitude and event type we compute the AUC for each complication, feature

extraction and algorithm combination. This leads to an entire catalogue of possible combinations, namely 1.27 · 105 (4 event

types, 20 event magnitudes, 11 complications, 18 feature extraction combinations, 8 algorithms). The number of combinations5

strongly requires simplification to infer knowledge about which combination is advisable to use. Hence, we focus on events

of magnitudes typically detected in real world data i.e. changes in the mean (extremes) larger than 2 sd (e.g., temperature

extremes in Hansen et al., 2012), a relative increase or decrease in the mean annual cycle amplitude of 25 % (which might

happen, e.g. in the carbon cycle after combined drought and heatwaves (Ciais et al., 2005), or in the Arctic due to abrupt sea

ice losses (Bintanja and van der Linden, 2013; Bathiany et al., 2016)) or an increase in the signal variance of 25 % (e.g. in10

temperature, Huntingford et al., 2013).

One way of summarizing the results of such a large number of combinations is treating the AUC values as the outcomes

of an experiment in which the different design decisions (e.g., feature extraction techniques, anomaly detection algorithms)

are the experimental factors. As a control treatment we introduce the simplest possible approach to detect the anomaly: UNIV

approach on the selected event type, without any further complications (e.g. short extremes or increase measurement noise) on15

the event type and without prior feature extraction. In order to assess the (averaged) effect of each experimental factor, we fit

a linear mixed-effects model (Pinheiro et al., 2016) to the AUC data (fixed effects: complications, feature extraction, anomaly

detection algorithms; random effect: magnitude of the event). This model’s coefficients express the overall effect of a factor

level with respect to the control while averaging over all other experimental factors. They are considered to be significant for

p < 0.01.20

Additionally, we compute the Resampling Variation of Parameter estimation of the anomaly detection algorithms (RVP) as

mean difference of the maximum AUC and minimum AUC for each resampling i= 1 . . .3 (Sect. 3.2).

RV Palgorithm =mean(max(AUCcomp,feat,magn,event,i)−min(AUCcomp,feat,magn,event,i)) (4)

3.4 Ensembles of Anomaly Detection Algorithms

Summarizing the output of several anomaly detection algorithms is one way to create more robust results (Thompson, 1977).25

For better comparability of the algorithms’ outputs, we rank them by computing the percentiles of the algorithm scores. These

are then aggregated into ensemble scores by computing the Minimum (min, ’Consensus voting’), the Mean (‘Balanced voting’)

or the Maximum (max, ’Risky voting’) of the scores of selected well performing algorithms (e.g., Aggarwal, 2012; Zimek et al.,

2013).

4 Results & Discussion30

In the following, we present the performance of the workflows in subsections corresponding to feature extraction techniques

(Sect. 4.1), anomaly detection algorithms (Sect. 4.2), and ensembles of detection algorithms (Sect. 4.3). Specifically, we present
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Figure 4. AUC difference with respect to the UNIV control in the experimental factors ‘feature extraction’ and ‘detection algorithm’ for the

event types (a-d).
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the AUC difference to the UNIV control, i.e. the output of the linear mixed-effects model on the experimental factors ‘feature

extraction’ and ‘detection algorithm’ (Fig. 4). The corresponding tables present the estimates as well as the RVP (Tab. 1, 2).

Apart from the model the full range of AUC values with respect to different event magnitudes, complications and event types

is presented in Appendix A, Fig. A1.

4.1 Feature Extraction Techniques5

Feature extraction techniques are often more important than the detection algorithm itself (Fig. 4). However, we find that

choosing a suitable feature extraction technique largely depends on the event type of interest. Therefore, the feature extraction

techniques are presented for different event types separately.

BaseShift. Shifts in the baseline are simulated to mimic extreme events. Increasing the magnitude (in terms of standard

deviations) of a BaseShift makes it easier to detect the event (Fig. A1). Dimensionality reduction (via PCA or ICA) is a crucial10

feature extraction technique step as it derives meaningful uncorrelated subsets of the data (Fig. 4 a). The combination of

dimensionality reduction with some temporal smoothing (EWMA) does not exhibit better overall performance (Fig. 4 a) as it

fails for ShortExtremes due to oversmoothing. Nevertheless EWMA can improve the detection rate for special cases, i.e. long

events (LongExtremes) and high signal to noise ratios (NoiseIncrease) (Fig. A1).

TrendOnset. Results look very similar to those of BaseShift, except that temporal smoothing with EWMA has a stronger15

positive effect than for BaseShift. This may be related to the fact that events for TrendOnset are longer than those for BaseShift.

Since the algorithms used in this work are not specifically designed to detect the onset of linear trends, we speculate that their

capability to detect such anomalies may be related to their ability to detect base shifts. While algorithms specifically designed

to detect changes in trends (e.g., Forkel et al., 2013)) were not included in our work due to our focus on more generic types of

anomalies, such specialized algorithms may perform better for this particular class of anomaly.20

MSCChange. In the detection of MSCChange most feature extraction algorithms showed some skill in the detection of an

amplitude increase, while only a subset of these succeeded also in detecting decreases in amplitude (Fig. A1). We focus on

the the latter ones, which have one step in common: they subtract the median seasonal cycle before applying the detection

algorithm (sMSC) (Fig. 4 c). In line with the results for TrendOnset and BaseShift, temporal smoothing in combination with

dimensionality reduction improves detection by a large margin (PCA_sMSC_EWMA). Furthermore accounting for temporal25

dynamics with a time delay embedding TDE is even more suitable (TDE_PCA_sMSC_EWMA).

VarianceChange. The algorithms used are hardly able to detect any decrease in variance (Fig. A1). This may be due to

an ’overwriting’ of the decrease in signal variance with the independent noise since we are using a signal to noise ratio of

0.3. Thus, we exclude a decrease in the variance from the evaluation of the detection algorithms compared to the control.

The detection of an increase in the variance can be improved by a combination of dimensionality reduction and variance in a30

moving window (PCA_mwVAR) (Fig. 4 d). Using the variance in a moving window is a popular approach (Huntingford et al.,

2013) although it has to be applied with care when used in conjunction with normalization procedures (Sippel et al., 2015).

SeasonalCycle. Seasonality is occurring in most EOs. Not accounting for the seasonal cycle has a negative impact on the AUC

(Appendix A, Fig. A2 a,b,d). However, if we subtract the median cycle within the feature extraction step (PCA_sMSC_EWMA,
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Fig. 4 a,b,d)), we can almost account for the negative AUC impact of the seasonal cycle, as in our experimental setting anoma-

lous events do occur independently of seasonality. However, depending on the research question, independence of seasonality

might not always be the case: some EOs may depend, e.g. on vegetation activity, which results in a strong dependence on

seasonality.

4.2 Performance of Multivariate Anomaly Detection Algorithms5

In contrast to the investigated combinations of feature extraction methods, we can identify 3 of the tested algorithms performing

on average almost equally well for most event types given a suitable feature extraction as discussed before (Sect. 4.1).

Table 1. Average AUC difference of the Anomaly Detection Algorithms to the UNIV control for each event type.

KNFST SVDD T2 KNN-Delta KNN-Gamma KDE REC

BaseShift -0.017 -0.069 0.013 0.006 0.032 0.024 0.024

TrendOnset 0.001 -0.015 0.014 -0.052 0.003 0.084 0.068

MSCChange -0.023 -0.072 -0.023 -0.019 0.007 0.039 0.029

VarianceChange -0.007 -0.027 0.003 0.012 0.018 0.022 0.019

Mean -0.012 -0.046 0.002 -0.013 0.015 0.042 0.035

RVP 0.007 0.111 0.003 0.000 0.001

KDE and REC exhibit overall highest AUC and lowest RVP (Tab. 1). Their estimated mean differences are rather small, since

REC can be considered as a binary form of the KDE. As REC uses a threshold ε for defining the hyperball of recurrences, the

results can exhibit slightly higher AUC than KDE (not shown). However, with REC the caveat is that the parameter ε is not10

necessarily optimally chosen.

KNN. In most of the cases, KNN-Gamma performance is better than the UNIV control, but only as good as the UNIV control

for detecting TrendOnset. This may be due to the fact that for TrendOnset, the mean distance to the KNN does not change,

unless considering a very large number of KNN or excluding a large fraction of temporally near data points to be within

the KNN. When excluding TrendOnset the mean performance increases to 0.019 which is comparable to KDE and REC. In15

contrast, KNN-Delta does not yield high AUC, probably because we do not construct anomalies in the data cube explicitly with

a direction that is accounted for by KNN-Delta (length of the mean vectors to its KNN). The finding that simple algorithms

like KNN-Gamma (or KDE, T2) are very competitive, if not favourable algorithms, goes in line with results of Harmeling et al.

(2006); Killourhy and Maxion (2009); Ding et al. (2014) on various data sets.

On average, KNFST and SVDD perform worse than or equally well as the Univariate control algorithm (UNIV). Also the20

RVP is highest among the algorithms (Tab. 1). It has already been reported, that SVDD can exhibit remarkable fluctuations

in the results for sample sizes smaller than 1000 data points (Ding et al., 2014). However, we use 5000 points for training.

Thus, we suggest that the fluctuations are due to the fact that SVDD and KNFST use a training set that is chosen at random

and may itself contain anomalies. In the current setting the size of the training sample (5,000) is rather small compared to the

spatiotemporal size of the data cube (750,000), and it does not seem to be sufficient to train these algorithms on the data cube.25
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Increased sample sizes, however, would heavily increase memory demand and computing time, rendering kernel algorithms

computationally inapplicable. Training and testing SVDD on each pixel did also not improve the results (not shown). We

explicitly do not want to state that these 2 algorithms are generally worse, i.e. they are just not built for these massive amounts

of data. KNFST and SVDD outperform others in very different setting (novelty detection in images) (Bodesheim et al., 2013).

T2 exhibits good performance for detecting starting trends and shifts in the mean. However, it also exhibits the third largest5

RVP (Tab. 1) indicating that the estimation of the covariance matrix may be sensitive to random variation in the data. Nev-

ertheless, the RVP is still far better than for SVDD. The robust estimation of the mean and covariance matrix might be a

difficult task (Smetek and Bauer, 2007; Rousseeuw and Hubert, 2011) for which rather complex algorithms like the (fast) min-

imum determinant covariance estimator have been proposed, which are closely related to T2 (Rousseeuw and Van Driessen,

1990). Furthermore, T2 assumes a multivariate Gaussian distribution and linear dependencies among the variables. Thus, it is10

not preferable for the complications NonLinearDep and CorrelatedNoise unless combined with a nonlinear feature extraction

technique like ICA (Fig. A1).

4.3 Ensembles

The selection of algorithms for computing the ensemble is a compromise between accurate detection of and diversity amongst

the selected algorithms (Zimek et al., 2013). We select the 4 best algorithms (4b, KDE, REC, KNN-Gamma,T2) and the 3 best15

distance-based algorithms (3d, KDE, REC, KNN-Gamma) for computing their ensembles. We assume that this choice accounts

for accuracy (best algorithms selected) as well as for diversity (different algorithms selected).

Overall, ensemble building improves the anomaly detection rate. The mean AUC of each of the ensemble members (3d:

+0.030, 4b: +0.023) is lower than the AUC of the ensemble, regardless of whether the maximum or the mean is used for

ensemble aggregation. Minimum aggregation of ensemble members, however, performs worse than the individual ensemble20

members REC and KDE. Using the maximum or mean yields consistently higher AUC than using the minimum (Tab. 2). The

superior performance of the maximum choice compared to the minimum indicates that single algorithms overlook more often

anomalous events than raising false alarm. Nevertheless, the maximum has the caveat that even a single algorithm may cause

a false alarm (Zimek et al., 2013), e.g. due to a poor parameterization or inadequate assumptions about properties of the data.

Thus, a more ’balanced voting’ procedure like the mean is the preferable choice and more stable with respect to possible error25

sources. Among the mean ensembles, the 3d or 4b ensembles perform equally well (0.041 vs. 0.039 ±0.001 overall) (Tab. 2).

4.4 Limitations

High Dimensionality. The utility of distance-based outlier detection algorithms as used in this paper is often questioned in

the context of high dimensional data (Zimek et al., 2012). The ’Curse of Dimensionality’ states that the difference between

near and far distances diminishes with increasing dimensionality. However, Zimek et al. (2012) showed in the case of KNN30

that the contrary is true for outliers with fixed magnitude in otherwise uncorrelated data. Dimensionality reduction as crucial

feature extraction transforms the data into few (ideally) meaningful and uncorrelated variables. Thus, the findings of Zimek
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Table 2. AUC difference of the ensembles of anomaly detection algorithms to the UNIV control. Ensembles are computed out of the 4 best

algorithms (4b, KDE, REC, KNN-Gamma, T2) and the 3 best distance-based algorithms (3d, KDE, REC, KNN-Gamma).

3d-max 3d-mean 3d-min 4b-max 4b-mean 4b-min

BaseShift 0.042 0.037 0.033 0.042 0.038 0.030

TrendOnset 0.059 0.058 0.033 0.060 0.056 0.020

MSCChange 0.033 0.040 0.032 0.033 0.037 0.017

VarianceChange 0.027 0.027 0.025 0.023 0.026 0.022

Mean 0.040 0.041 0.031 0.039 0.039 0.022

RVP 0.001 0.001 0.001 0.001 0.001 0.001

et al. (2012) provide strong arguments for applying dimensionality reduction on correlated data. We anticipate that his findings

are the reason of the superior performance of dimensionality reduction here.

Heuristic Choices. Within the parameterization process, several heuristic choices are made. We exclude 5 time steps to be

counted as recurrences or k-nearest neighbours. We fix several parameters, e.g. the number of nearest neighbours is fixed to

10. Also other parameter choices are rather heuristic (e.g. σ), although commonly used. Within the data farm creation, we5

assume that the number of intrinsic dimension is 3, the signal to noise ratio is 0.3. Furthermore, the choice of the complications

might influence the results for each event type, as the standard deviation of AUC values over all complications (0.05) is rather

large, compared to the average AUC gain of the 3 best algorithms with respect to the control (+0.03). However, the ordering of

the algorithms is also important to derive rankings of algorithms (Hornik and Meyer, 2007). By choosing different subsets of

the complications, we observe that the 3 best algorithms (KDE, REC, KNN-Gamma) are on top, independently of the chosen10

complication. Therefore, the complications might have an influence on the AUC values themselves, but not on the choice of

the 3 top candidates.

5 Remarks on Applications for Real Earth Observations

Our versions of the artificial data cubes were generated to test different algorithms for their capability to deal with typical

properties of Earth observation data. The workflows were chosen to be as generic as possible, and therefore their application15

to ‘real’ data with slightly different properties should be made as easy as possible. Nevertheless, several points have to be

considered, when applying the algorithms on real EOs.

A typical preprocessing of Earth observations is to center variables to zero-mean and standardize to unit variance (also

known as z transformation). A standardization of this kind is of key importance in global EOs. Real multivariate observations

often have different physical units or ranges, which have to be made comparable before analysing. However, standardization20

has to be applied with care. Differences of the mean and variance between geographically distinct or even adjacent grid cells

as well as seasonal cycles might corrupt any further analysis. We recommend to subtract the median seasonal cycle before

standardization. The median is prefered over the mean as mean seasonal cycles are affected by changes in the amplitude of
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the cycle. Standardization can be applied globally (i.e. with global spatiotemporal mean and variance), regionally (i.e. with

spatiotemporal mean and variance in subregions of the globe), or locally (i.e. with temporal mean and variance in each grid-

cell). Global standardization might be more robust than local, but detects only anomalies in high-variance regions. Local

standardization assumes that the number of extreme anomalies is equal in each grid cell, which is a rather strong assumption.

Thus, a regional standardization is favourable in regions with similar mean and variance.5

Especially variables presenting a signal from the biosphere are known to exhibit heteroscedasticity, e.g. the variance during

growing season is substantially larger than during the rest of the year (Fig. 5). Atmospheric variables in high latitudes also

show higher variability during the cold season, e.g. temperature variability might be higher over ice (cold season) than over

open water (warm season) (Hansen et al., 2012). Specifically for global applications, using estimates of variance or standard

deviation locally (in each grid-cell) leads to an underestimation of the variance during growing season and thus to an overesti-10

mation of anomalies due to standardization especially in the Northern latitudes (Guanche et al., 2016). Thus, we recommend

to account for the heteroscedastic pattern by adjusting the variance during the growing season within similar regions. We also

recommend this kind of adjustment for the covariance matrix used, e.g., in T2 or PCA as well as for the parameterization of

KDE or REC.
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Figure 5. The residual time series obtained by subtracting the median seasonal cycle from (a) the fraction of absorbed photosynthetic

radiation (fPAR) and (b) Gross Primary Productivity (GPP) at Northern latitudes exhibit heteroscedastic patterns.

Furthermore, anomalies are also overestimated when using a reference period for the estimation of the variance (Sippel et al.,15

2015). However, with 300 observations in 8-day intervals, as used in this study, this issue is expected to be less pronounced

than for fewer observations as it scales with the length of the time series. Nevertheless, we rather recommend to use estimates

of the variance of the entire time series or to correct for the overestimation in the out-of-reference period as shown in Sippel

et al. (2015).

Regarding the parameterization process of the algorithms we use fixed parameters for σ, ε, k, ν, mean vector, and covariance20

matrix globally on the entire artificial data cube. Local parameterization assumes the same amount of anomalies in each region,

which is neither suitable for the artificial data by construction nor for global real data. Thus we recommend to parametrise

globally or within similar regions. Classification of the Earth into similar regions and applying multivariate extreme detection

in each region will be the subject of future research.
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6 Conclusions

Our aim is to identify suitable methods for detecting anomalies in highly multivariate, correlated, and seasonally varying data

streams as they are common in Earth system science. In particular, we are interested in detecting shifts in mean (extremes),

changes in the amplitude of the seasonal cycle, temporal changes in the variance and onsets of trends. We test a wide range

of workflows (i.e. combining feature extraction techniques and anomaly detection algorithms). All experiments are based on5

artificial data, designed to mimic real world Earth observations.

We can show that, on average over different anomaly types and data ‘complications’, 3 multivariate anomaly detection

algorithms (KDE, REC, KNN-Gamma) outperform univariate extreme event detection as well as other multivariate approaches

(mean AUC compared to univariate control: +0.030). Additional slight improvement can be achieved by combining the best

algorithms into ensembles using an aggregation by averaging score quantiles (+0.041). In contrast, the tested machine-learning10

algorithms (SVDD −0.05, KNFST −0.01) may fail due to overfitting to the training sample.

However, we also find that including a suitable feature extraction technique in the detection workflow is often more important

than the choice of the event detection algorithm itself. Yet, we find that the feature extraction has to be explicitly designed for

the event type of interest, i.e. time delay embedding (for detecting changes in the cycle amplitude) and exponential weighted

moving average (for detecting trends, long extremes and removing uncorrelated noise in the signal) increases the detection rate15

of the anomalous events. Including features of the variance within a moving window works partly for detecting increases in the

variance, but fails to detect a decrease in the variance due to the relatively high observational noise level. In general, if the data

comprises seasonality, subtracting it and using the remaining time series as input feature is essential. Furthermore, we improve

the detection rate of multivariate anomalies in highly correlated data streams by adding a dimensionality reduction method to

the workflow (in line with results of Zimek et al., 2012).20

The proposed workflows are capable of dealing with common properties of Earth observations like seasonality, non-linear

dependencies as well as (to a certain degree) non-Gaussian distributions and noise. Nevertheless, they have to be applied with

care to Earth observations, i.e. standardization issues along with strong heteroscedastic patterns (e.g. in Biosphere variables

of Northern latitudes) may lead to an overestimation of anomalies. Future work will explore the potential of the identified

workflows on rediscovering known and potentially unknown extremes as well as other anomalies in a set of real Earth sys-25

tem science data streams. We anticipate that an automated application of our workflows might enable the establishment of

automated Earth system process control in a very generic manner.
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Appendix A: Detailed Results
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Figure A1. AUC versus event magnitude for all combinations (grey) and the Univariate control (red). Columns of the matrix represent

different event types, rows represent complications. Additional colored workflows represent the workflows with the 5 highest mean values

for the magnitudes > 2 sd (> 0.6 respectively).
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(b) TrendOnset
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(d) VarianceChange

complications p > 0.01

Figure A2. Effect of the complications on the 3 best detection algorithms (KDE, REC, KNN-Gamma) presented as AUC difference of the

UNIV control for the event types (a-d).
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Appendix B: Technical Details on Generating the Artificial Data

Within the generation process, we assume that the signal S is additive to the baseline B. The baseline might represent reoc-

curing patterns like seasonality or a constant mean. In addition, binary event parameters evt,lat,lon are introduced, which allow

for switching the anomaly on evt,lat,lon 6= 0 and off evt,lat,lon = 0 (’normality’). The event type and magnitude of the event

is controlled by a parameter separately for the baseline (kb), the signal (ks) and a mean-shift parameter (km) scaled with the5

standard deviation of the data sd.

Θt,lat,lon =Bt,lat,lon · 2(kb·evt,lat,lon) +St,lat,lon · 2(ks·evt,lat,lon) + km · evt,lat,lon · sd (B1)

For a basic version, 3 independent components Θt,lat,lon,var are created with the signal consisting of Gaussian noise (sd=

1). Each component represents intrinsic properties of the Earth system. Furthermore, we assume that properties of the Earth

system Θt,lat,lon are not measured directly but indirectly via a set of correlated variables, i.e. representing patterns of these10

intrinsic properties. Hence, these variables propagate anomalous events that occur in one independent component. This set of

correlated variables Xvar is created by weighting the intrinsic properties Θvar with randomly drawn linear (or non-linear)

weights wj plus additional measurement noise ε (Gaussian, sd= 0.3) added to each variable.

Xvar =
j=3∑

j=1

wj ·Θj + ε (B2)

Using this data generation scheme, a standard data cube Xti,j ,lat,lon,var is created, encompassing 300 time steps (T ), 1015

temporally correlated variables (V AR) and the total number of latitudes (LAT ) and longitudes (LON ) fixed to 50 each. We

induce anomalous events with a spatial extent of 40 % of the latitude and longitude and 10 events, each with a temporal extent

of 5 time steps. Our total amount of anomalies equals about 3 % of the total data cube.

In the basic version we create 4 data cubes each with a different temporary event type:

– Shift in the baseline, i.e. shift of the running mean of a time series (BaseShift) (Fig. 2 a)20

– Change in the variance of the time series (VarianceChange) (Fig. 2 b)

– Change in the amplitude of the mean seasonal cycle of a time series (MSCChange)(Fig. 2 c)

– Onset of a trend in the time series (TrendOnset) (Fig. 2 d)

Regarding the complications, some of the event type complication combinations are excluded (Tab. B1). In detail, we do

not expect a TrendOnset to ’infect’ neighboured cells (TrendOnset plus RandomWalkExtreme) and a TrendOnset can hardly be25

called a TrendOnset if it encompasses only one time step (ShortExtremes).

The artificial data farm can be created after cloning into https://github.com/CAB-LAB/DataFarm. Generation is done with

the following command within the programming language julia, version 0.4:

using SurrogateCube; SurrogateCube.DataFarm.makeDataFarm(300,50,50,PathToFolder)
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Table B1. Parameter settings for the generation of the artificial data farm. Details are given for each event type and complication (in brackets).

Basic (Complication) BaseShift VarianceChange MSCChange TrendOnset

Independent comp. Θ 3 (MoreIndep Com-

ponents)

3 (6) 3 (6) 3 (6) 3 (6)

Dependency (Θ) linear (w) (NonLinearDep

squ)

w (squ) w (squ) w (sq) w (sq)

Baseline B const. = c (SeasonalCycle s,

LatitudinalGradi-

ent lg))

c (s, lg) c (s, lg) s (lg) c (s, lg)

Signal S gaussian g (LaplacianNoise

l, Correlated-

Noise r)

g (l, r) g (l, r) g (l, r) g (l, r)

Variables VAR 10 10 10 10 10

Noise ε 0.3 (NoiseIncrease) 0.3 (1) 0.3 (1) 0.3 (1) 0.3 (1)

Events

Event number 10 (ShortExtremes,

LongExtremes)

10 (50, 5) 10 (50, 5) 1 1

Spatial extent 1000 1000 1000 4 1000

Temporal extent 5 (ShortExtremes,

LongExtremes)

5 (1,10) 5 (1,10) 92 (46, 184) 150

Magnitudes km = 0.2-4 ks = -2:2 kb = -2:2 km = 0.2-4

Shape rect. (RandomWalk

Extreme rw)

rect (rw) rect (rw) rect (rw) rect
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